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A B S T R A C T

Intrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of the human brain. However, due to practical limitations,
many studies do not collect enough resting-state data to generate reliable measures of intrinsic connectivity necessary for studying individual differences. Here we
present general functional connectivity (GFC) as a method for leveraging shared features across resting-state and task fMRI and demonstrate in the Human Con-
nectome Project and the Dunedin Study that GFC offers better test-retest reliability than intrinsic connectivity estimated from the same amount of resting-state data
alone. Furthermore, at equivalent scan lengths, GFC displayed higher estimates of heritability than resting-state functional connectivity. We also found that predictions
of cognitive ability from GFC generalized across datasets, performing as well or better than resting-state or task data alone. Collectively, our work suggests that GFC
can improve the reliability of intrinsic connectivity estimates in existing datasets and, subsequently, the opportunity to identify meaningful correlates of individual
differences in behavior. Given that task and resting-state data are often collected together, many researchers can immediately derive more reliable measures of
intrinsic connectivity through the adoption of GFC rather than solely using resting-state data. Moreover, by better capturing heritable variation in intrinsic con-
nectivity, GFC represents a novel endophenotype with broad applications in clinical neuroscience and biomarker discovery.
1. Introduction

Functional magnetic resonance imaging (fMRI) has proven invaluable
for identifying the neural architecture of human behavior and cognition
(Betti et al., 2013; Fox et al., 2007; Huth et al., 2016). Accordingly, fMRI
has been widely adopted in myriad studies seeking to deepen our un-
derstanding of the human brain in both health and disease (Cole et al.,
2011; Power et al., 2013; Satterthwaite et al., 2016). Recently, fMRI
studies have expanded in both scale and scope, often collecting data in
thousands of individuals in an effort to adequately power the search for
neural correlates of complex human traits and predictive biomarkers for
mental illness (Casey et al., 2018; Elliott et al., 2018; Miller et al., 2016;
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Swartz et al., 2015; Thompson et al., 2014). In this context, most studies
have focused on the acquisition of resting-state functional MRI to map
the intrinsic connectivity of neural networks. This choice is often
prompted by three considerations. First, intrinsic connectivity networks
appear to be more heritable than task-elicited activity (Elliott et al., 2017;
Ge et al., 2017; Winkler et al., 2010). Second, resting-state data are
relatively easy to collect from informative populations of children, the
elderly, and mentally ill patients (Fox, 2010; Greicius, 2008; Shehzad
et al., 2009). Third, intrinsic connectivity plays a primary role in shaping
task-based brain activity and associated behaviors (Cole et al., 2016,
2014; Krienen et al., 2014; Tavor et al., 2016).

While analyses of resting-state data have revealed insights about
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average, group-level features of the human brain (Buckner et al., 2008;
Power et al., 2011; Yeo et al., 2011), progress has lagged in identifying
individualized signatures, which are critical if ongoing large-scale studies
are to be successful in the search for risk and disease biomarkers. This
lack of progress partially reflects the generally poor test-retest reliability
of intrinsic connectivity estimates in many resting-state datasets (Birn
et al., 2013; Guo et al., 2012). The reliability of intrinsic connectivity
measures must be improved, as unreliability limits the ability to predict
individual differences that could become clinical biomarkers (Nunnally
Jr., 1970; Vul et al., 2009). In this paper we propose general functional
connectivity (GFC), a simple method for combining resting-state and task
fMRI data to improve the reliability of intrinsic connectivity.

Historically researchers have collected 5–10min of resting-state data
in response to both published recommendations (Shehzad et al., 2009;
Van Dijk et al., 2010) and practical limitations (e.g., scan time, cost and
subject stamina). While such data may be adequate for detecting patterns
of intrinsic connectivity common across individuals, more than 25min of
data are needed to reliably detect individual differences in these same
patterns (Anderson et al., 2011; Hacker et al., 2013; Laumann et al.,
2015). This suggests that intrinsic connectivity may simply be a noisy
measure of stable individual differences and that lengthier measurement
is needed to identify the “true” signal (Braga and Buckner, 2017; Gordon
et al., 2017; Gratton et al., 2018; Mueller et al., 2013). However, due to
the high cost of scan time and the limited ability of many individuals
including children, the elderly, and the mentally ill to lie still without
falling asleep for tens of minutes of scanning, this level of protracted
measurement is simply not feasible for a majority of studies (Power et al.,
2012; Satterthwaite et al., 2013; Tagliazucchi and Laufs, 2014). To
illustrate the point, two recent meta-analyses of resting-state intrinsic
connectivity in depression (Kaiser et al., 2015) and schizophrenia (Dong
et al., 2018) revealed average resting-state scan times of 6.53min (k¼ 23
studies) and 6.24min (k¼ 36 studies), respectively. It is likely that
intrinsic connectivity based on these brief scans has low reliability,
reducing the ability to discover individual differences and related bio-
markers. If measures of intrinsic connectivity are to realize their potential
as a clinical tool (Fox, 2010; Matthews et al., 2006) and contribute to
personalized medicine (Collins and Varmus, 2015; Hamburg and Collins,
2010), there must first be substantial improvement in their reliability,
and this should be ideally achieved within the practical limitations of
study design and participant burden.

Although few studies collect enough resting-state data to achieve high
levels of reliability, many collect multiple task scans in addition to a
resting-state scan. While it has been implicitly assumed that task and
resting-state scans are two separate measures of brain function, to be
analyzed and studied independently, a growing body of evidence sug-
gests that the intrinsic connectivity measured by each may have sub-
stantial overlap, sharing over 80% of the same variance (Cole et al., 2014;
Geerligs et al., 2015; Tavor et al., 2016). In fact, it has long been known
that intrinsic networks extracted from task scans are quite similar to
those extracted from resting-state scans, and task scans have been used
for intrinsic connectivity analyses when resting-state data are absent
(Arfanakis et al., 2000; Fair et al., 2007; Fox et al., 2006; Smith et al.,
2009). Further, mental operations that occur during task states have been
linked to resting-state functional networks (Bzdok et al., 2016; Leech
et al., 2012), and task scans have been shown to accentuate individual
differences in network dynamics (Finn et al., 2017; Greene et al., 2018;
Satterthwaite et al., 2018). Despite this evidence for a complementary
relationship between resting-state and task fMRI, they are typically
investigated separately. Even when researchers have collected both task
and resting-state fMRI in the same subjects, analyses of intrinsic con-
nectivity are almost always performed on a single short resting-state scan
despite the low test-retest reliability of short scan data. If it could be
demonstrated that the reliability of intrinsic connectivity can be
improved by adding task to resting-state fMRI, many researchers could
immediately benefit by adopting this approach in data they have already
collected, and also in designing future studies. The field of
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individual-differences neuroscience would also benefit from the resulting
increase in reliability, replicability, and power that would follow the
widespread adoption of combining task and resting-state fMRI.

Here we hypothesized that measures of intrinsic connectivity will be
more reliable when task and resting-state scans are combined into a
longer dataset (i.e., GFC) compared to short resting-state scans alone.
Additionally, we hypothesized that this boost in reliability with GFC will
increase the amount of heritable variation detectable in intrinsic con-
nectivity, because the detection of heritability requires reliable mea-
surement. Finally, we hypothesized that GFC would measure a common
backbone of intrinsic connectivity common across task and resting-state
data allowing for better out-of-sample prediction of individual differ-
ences. We examined two existing datasets in 3 different ways to test these
hypotheses. First, we investigated the test-retest reliability of different
combinations of task and resting-state data in both the Human Con-
nectome Project (HCP (Van Essen et al., 2013)), which uses
state-of-the-art fMRI hardware and acquisition parameters in a highly
educated, healthy sample, and in the Dunedin Study (Poulton et al.,
2015), which uses more common fMRI hardware and acquisition pa-
rameters in a population-representative birth cohort. Second, we esti-
mated the heritability of GFC and resting-state functional connectivity
(RSFC) by leveraging the twin sampling design of the HCP. Third, we
investigated the ability of GFC to measure generalizable individual dif-
ferences in cognitive ability across samples and across task states by
testing out-of-sample prediction of cognitive ability in the HCP and
Dunedin Study samples.

2. Materials and methods

2.1. Datasets

Human Connectome Project. This is a publicly available data set that
includes 1206 participants with extensive MRI and behavioral mea-
surement (Van Essen et al., 2013). In addition, 45 of these subjects
completed the entire scan protocol a second time (referred to hereafter as
“test-retest sample”). All participants were free of current psychiatric or
neurologic illness and were 25–35 years of age. In all analyses, subjects
were excluded if they had truncated scans, less than 40min of combined
task data, or less than 40min of resting-state data after censoring. Much
of the HCP dataset consists of twins and family members. We exploited
this feature of the design for conducting heritability analyses. For these
analyses, 943 participants from 420 families met inclusion criteria (144
monozygotic families, 85 dizygotic families, and 191 full sibling fam-
ilies). To avoid bias due to family confounding in the prediction analyses,
only one individual per family was retained (the family member with the
least motion during scanning). This resulted in 298 subjects left to be
used in our prediction analyses. Eight subjects were removed from our
test-retest analyses because they had at least one fMRI scan with trun-
cated or missing data. Four subjects were removed because they did not
have sufficient data (i.e., >40min of rest and >40min of task) after
censoring. Therefore, the test-retest reliability analyses included data
from 33 participants.

The acquisition parameters and minimal preprocessing of these data
have been described extensively elsewhere (Glasser et al., 2013). In our
analyses, we used the minimally preprocessed data in volumetric Mon-
treal Neurological Institute (MNI) space (“fMRIVolume” pipeline).
Briefly, participants underwent extensive MRI measurement that
included T1 and T2 weighted structural imaging, diffusion tensor imag-
ing, and nearly 2 h of resting-state and task fMRI. One hour of
resting-state fMRI was collected on each participant in four 15-min scans
(1200 time-points each) split-up into two scanning sessions over two
days. In each scan session the two resting-state scans were followed by
task fMRI (Smith et al., 2013). Across the two sessions, each participant
completed seven fMRI tasks described extensively elsewhere (Barch
et al., 2013). Briefly, tasks were designed to identify functionally relevant
“nodes” in the brain and included working memory (810 timepoints,
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10:02min), gambling (506 timepoints, 6:24min), motor function (568
timepoints, 7:06min), language (632 timepoints, 7:54min), social
cognition (548 timepoints, 6:54min), relational processing (464 time-
points, 6:52min) and emotional processing (352 timepoints, 4:32min).
Altogether, 4800 timepoints totaling 60min of resting-state fMRI and
3880 timepoints totaling 48:30min of task fMRI were collected on each
participant.

Dunedin Study. This is a longitudinal investigation of health and
behavior in a complete birth cohort of 1037 individuals (91% of eligible
births; 52%male) born between April 1972 and March 1973 in Dunedin,
New Zealand (NZ), and eligible based on residence in the province and
participation in the first assessment at age three. The cohort represents
the full range of socioeconomic status on NZ's South Island and matches
the NZ National Health and Nutrition Survey on key health indicators
(e.g., BMI, smoking, GP visits) (Poulton et al., 2015). The cohort is pri-
marily white; fewer than 7% self-identify as having non-Caucasian
ancestry, matching the South Island (Poulton et al., 2015). Assessments
were carried out at birth and ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, and
38 years, when 95% of the 1007 study members still alive took part.
Neuroimaging data collection is ongoing in participants who are now
aged 45 years. We currently have collected completed neuroimaging data
for 756 study members. Data were excluded if the study member did not
complete the rest scan and all four task scans or if they did not have
sufficient data after censoring and bandpass filtering was applied to the
resting-state and each task scan separately (see below for censoring de-
tails). Data for 591 subjects survived these fMRI exclusion criteria and
were included in analyses. Additionally, 20 study members completed
the entire scan protocol a second time (mean days between scans¼ 79).
Of these one failed to have sufficient degrees of freedom after censoring
and bandpass filtering. Therefore, the test-retest reliability analyses
included data from 19 participants.

Each participant was scanned using a Siemens Skyra 3T scanner
equipped with a 64-channel head/neck coil at the Pacific Radiology
imaging center in Dunedin, New Zealand. High resolution structural
images were obtained using a T1-weighted MP-RAGE sequence with the
following parameters: TR¼ 2400ms; TE¼ 1.98ms; 208 sagittal slices;
flip angle, 9�; FOV, 224mm; matrix¼ 256� 256; slice thick-
ness¼ 0.9mm with no gap (voxel size 0.9� 0.875� 0.875mm); and
total scan time¼ 6:52min. Functional MRI was collected during resting-
state and four tasks with a series of 72 interleaved axial T2-weighted
functional slices acquired using a 3-fold multi-band accelerated echo
planar imaging sequence with the following parameters: TR¼ 2000ms,
TE¼ 27ms, flip angle¼ 90�, field-of-view¼ 200mm, voxel size¼ 2mm
isotropic, slice thickness¼ 2mm without gap.

8:16min (248 TRs) of resting-state fMRI was collected immediately
before the four task fMRI scans. During the resting-state scan participants
were instructed to stay awake with their eyes open while looking at a
grey screen. Participants completed an emotion processing task
(6:40min, 200 TRs), a color Stroop task (6:58min, 209 TRs), a monetary
incentive delay (MID) task (7:44min, 232 TRs) and an episodic memory
task (5:44min, 172 TRs). All four tasks are described in detail in the
supplement.

2.2. fMRI pre-processing

Minimal preprocessing was first applied to all data. For the HCP
dataset this was done with the HCP minimal preprocessing pipeline
(Glasser et al., 2013) and included correction for B0 distortion, realign-
ment to correct for motion, registration to the participant's structural
scan, normalization to the 4D mean, brain masking, and non-linear
warping to MNI space.

Minimal preprocessing steps were applied to the Dunedin Study
dataset using custom processing scripts. Anatomical images were skull-
stripped, intensity-normalized, and nonlinearly warped to a study-
specific average template in the standard MNI stereotactic space using
the ANTs SyN registration algorithm (Avants et al., 2008; Klein et al.,
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2009). Time-series images were despiked, slice-time-corrected, realigned
to the first volume in the time-series to correct for head motion using
AFNI tools (Cox, 1996), coregistered to the anatomical image using FSL's
Boundary Based Registration (Greve and Fischl, 2009), spatially
normalized into MNI space using the non-linear ANTs SyN warp from the
anatomical image, and resampled to 2mm isotropic voxels. Dunedin
Study images were additionally corrected for B0 distortions.

Time-series images for each dataset were further processed to limit
the influence of motion and other artifacts. Voxel-wise signal intensities
were scaled to yield a time-series mean of 100 for each voxel. Motion
regressors were created using each participant's 6 motion correction
parameters (3 rotation and 3 translation) and their first derivatives (Jo
et al., 2013; Satterthwaite et al., 2013) yielding 12 motion regressors.
Five components from white matter and cerebrospinal fluid were
extracted using CompCorr (Behzadi et al., 2007) and used as nuisance
regressors, along with the mean global signal. In the Dunedin Study
dataset, images were bandpass filtered to retain frequencies between
0.008 and 0.1 Hz. In the HCP dataset, images only underwent highpass
filtering with a cutoff of .008 Hz. High frequency signals were retained
because removing high frequency signals would have resulted in exces-
sive loss of degrees of freedom due to the very low TR (0.75 s) (Bright
et al., 2017; Caballero-Gaudes and Reynolds, 2017). In the HCP dataset,
we followed the empirically derived thresholds of .39mm frame-wise
displacement or 4.9 units above the median DVARS as recommended
(Burgess et al., 2016). In the Dunedin Study dataset, we investigated a
range of framewise-displacement cutoffs using QC-RSFC plots in order to
derive the optimal threshold for removing motion artifact as recom-
mended (Power et al., 2014). This investigation led to thresholds of
0.35mm framewise-displacement and 1.55 standardized DVARS. In both
datasets, nuisance regression, bandpass filtering, censoring, global-signal
regression, and smoothing of 6mm FWHM for each time-series were
performed in a single processing step using AFNI's 3dTproject. Identical
time-series processing was applied to resting-state and task time-series
data with one exception.

To remove functional connectivity predominantly driven by task-
evoked coactivation, signal due to task structure was added as an addi-
tional nuisance covariate to all task scans and removed from their time-
series (Fair et al., 2007) (see supplemental for details on task modeling
and regression). However, we examined the impact of task structure on
our estimates of intrinsic connectivity by conducting parallel analyses
without the regression of task structure. While task regression had a small
but consistent effect of lowering ICCs for intrinsic connectivity estimates
(see Supplemental Table S1), the ability to predict cognitive ability was
slightly higher when task regression was applied (see Supplemental
Table S2). Thus, we focus on analyses with task regression in our primary
results.

2.3. Effects of global signal regression

Global signal regression (GSR) was performed to adopt a conservative
approach to motion artifact reduction and used in our main analyses
(Power et al., 2018). However, because use of GSR is still debated
(Murphy and Fox, 2017), we also preprocessed our data with parallel
preprocessing methods without GSR (see Supplemental Fig. S1).

2.4. Functional connectivity processing

We investigated whole-brain intrinsic connectivity using two par-
cellation schemes. In the reliability and prediction analyses (described
below), a 264-region parcellation was utilized. This parcellation was
derived in a large independent dataset (Power et al., 2011). BOLD data
were averaged within 5mm spheres surrounding each of the 264 co-
ordinates in the parcellation. In the heritability analyses we used a
smaller 44-brain-region parcellation scheme due to computational con-
straints imposed by the time needed to fit heritability models at each
edge independently (described below). This parcellation was derived
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from the 7-network parcellation scheme described in (Yeo et al., 2011).
These 7 networks were broken up into 44 spatially contiguous regions
across the two hemispheres. Average time series were extracted from all
44 regions. For both parcellations the average time-series was extracted
independently from each scan session in every dataset. This allowed the
time-series to be flexibly concatenated and recombined. Correlation
matrices were derived from these time-series using Pearson correlation,
resulting in 34,716 edges in the Power et al. parcellation and 946 edges
in the Yeo et al. parcellation.

2.5. Test-retest reliability

Intraclass correlation (ICC) was used to quantify the test-retest reli-
ability of intrinsic connectivity measures in the HCP and Dunedin Study
test-retest datasets. ICC (3,1) was used in all analyses (Chen et al., 2018).
In the HCP dataset, the influence of the amount of data, as well as type of
data (resting-state or task) on ICC was investigated. In the resting-state
analyses, intrinsic connectivity matrices were calculated across a range
of scan lengths (5, 10, 20, 30, and 40min of post-censoring data)
mirrored in the test and retest samples. ICCs were then calculated for
each edge of this matrix, yielding 34716 (264� 263/2) unique ICC
values for each scan length. A more general definition of intrinsic con-
nectivity was derived by including task data in the intrinsic connectivity
matrices. GFC was formally investigated (Figs. 1–3) by constructing
datasets from a combination of task and resting-state data over a variety
of scan lengths (5, 10, 20, 30 and 40min of post-censoring data). In scan
lengths up to 25min, an exactly equal amount of data from all scan types
(1/8 of total scan length from each task and resting-state) was combined.
After this point, equal amounts of each task could no longer be added
together because the shortest task scan no longer had sufficient time-
points remaining in all participants. Above 25min, timepoints were
selected at random from the pool of remaining timepoints. In the Dun-
edin Study, two ICC matrices were constructed. The first was built from
each participant's single resting-state scan and the second from all task
and resting-state scans to create the GFC matrix. Paired-sample t-tests
were used to compare mean differences in reliability between ICC
matrices constructed from traditional resting-state functional connec-
tivity and GFC.

HCP fMRI data were collected in two phase-encoding directions (LR
Fig. 1. Test-retest reliability of intrinsic connectivity increases as the amount of data
HCP dataset displaying the proportion of functional connections (i.e., edges) across ne
good, moderate, and poor reliability as indexed by ICCs.
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and RL). To minimize bias due to phase-encoding direction on our an-
alyses, in each participant, for each task, timepoints were first selected
from LR encoded scans until LR timepoints were exhausted. Subse-
quently, timepoints were selected from remaining RL-encoded scans.
This ensured that all subjects had a roughly equivalent proportion of LR
and RL timepoints within a given analysis. This also ensured roughly
equivalent proportions of LR and RL phase encoding across test and
retest correlation matrices when calculating ICCs. Selecting from LR first
before RL had the additional benefit of mimicking shorter data-
acquisition scans because timepoints were utilized in the order they
were collected.

2.6. Heritability

For each edge of the connectivity matrix, we ran an extended twin
model (Posthuma and Boomsma, 2000), which is an extension of the
classic twin design in that it allows for the modeling of additional family
members of twins. In the HCP study we had data from the families of
monozygotic and dizygotic twins as well as siblings in families without a
twin pair. In this model the variance of the phenotype (in this case cor-
relations between brain regions) is partitioned into four sources: additive
genetic factors (A), shared environmental factors (C), twin-specific fac-
tors (T), and unique environmental factors and error (E) based on the
correlations between monozygotic twins, dizygotic twins, and their sib-
lings. Due to their small numbers, we eliminated half-siblings from the
model (N¼ 27) and capped family size at four individuals (7 families
affected, N¼ 13). This left us with 1078 individuals from 443 families
(148 monozygotic families, 92 dizygotic Z families, 203 full-sibling
families). Of these, 943 participants from 420 families (144 mono-
zygotic families, 85 dizygotic families and 191 full-sibling families) had
full scans from all tasks and rest and had at least 40min of task data and
40min of rest data after censoring. Heritability analyses were performed
using OpenMx (Boker et al., 2011; Neale et al., 2016) in the R statistical
computing environment. Each model also contained parameters to adjust
for the effects of sex and age on the mean. Confidence intervals were
obtained on the A, C, T, and E estimates using the mxCI command in
OpenMx which obtains profile likelihood confidence intervals (Pek and
Wu, 2015). For each edge, an estimate was determined to be significant if
the lower bound of the confidence interval was greater than zero.
used to estimate either RSFC (A) or GFC (B) increases. Stacked bar plots from the
ural networks as defined by (Power et al., 2011) that meet criteria for excellent,



Fig. 2. Test-retest reliability of the intrinsic connectivity of canonical neural networks derived from either RSFC or GFC from the HCP scales with the amount of data
available for analysis. Intra-Class Correlation (ICC) matrices for RSFC (left panel) and GFC (right panel) demonstrate comparable gains in reliability with increasing
amounts of data across common intrinsic networks (Power et al., 2011). 5 and 10min are written in red because these are common scan lengths for resting-state scans.
30 and 40min are written in blue because many researchers have collected this amount of fMRI data when resting-state and task scans are combined. To the bottom
left of ICC matrices is the color key for the ICCs, with a histogram indicating the density of ICCs for the corresponding graph.
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Fig. 3. The improvement in test-retest reliability of intrinsic connectivity as a function of adding data varies across canonical functional networks. In the left panel
mean ICC for RSFC are displayed for within-network connections across 7 previously defined networks (Yeo et al., 2011) for a variety of scan lengths. In the right panel
the same data are displayed for GFC. There are clear and consistent differences between networks. The limbic network consistently has the lowest mean ICC, while the
default mode network consistently has the highest mean ICC.
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2.7. Connectome-based predictive modeling

The predictive utility of increasing reliability through our GFC mea-
sure was evaluated by testing the ability of the different intrinsic con-
nectivity matrices to predict cognitive ability in the HCP and Dunedin
Study datasets. Cognitive ability was measured in the HCP using the
Raven's Progressive Matrices (PMAT24_A_CR) (Raven, 1941). This mea-
sure was adopted because it is a proxy for cognitive ability that has been
shown to be predicted by intrinsic connectivity in the HCP (Dubois et al.,
2018; Finn et al., 2015; Noble et al., 2017). The WAIS-IV, a
well-established and validated measure of individual differences in
cognitive ability (Weschler, 2008), was used in the Dunedin Study.

Cognitive ability was predicted from intrinsic connectivity data using
connectome-based predictive modeling (CPM (Shen et al., 2017);). This
framework provides a general method to predict any measure from
intrinsic connectivity matrices. In this approach, predictors are filtered
by selecting edges that have a p< .01 correlation with the measure of
interest. Three linear regression predictive models are then built, one
from the positive features (edges positively correlated with the pheno-
type of interest), one from the negative features (edges negatively
correlated with the phenotype of interest), and one from the combination
of positive and negative features (Shen et al., 2017). Here we report re-
sults from the combinedmodel (see supplemental tables S3, S4 and S5 for
results from all models). In our CPM analyses, we used both
within-sample and out-of-sample prediction. Within-sample models were
used to directly compare RSFC and GFC predictions of cognitive ability
using a leave-one-out cross-validation scheme. Models were trained with
all participants except one and used to predict the measure in the left-out
participant. This was repeated until all participants had been left out.

Out-of-sample prediction is the gold standard to test the unbiased
predictive utility of models (Whelan and Garavan, 2014; Yarkoni and
Westfall, 2017) and was therefore used to test the generalizability of
predictive models built with RSFC, GFC, and task data. To test the in-
fluence of task state, data aggregation and scan length on predictive
utility, models were trained with RSFC, GFC, and individual tasks in the
Dunedin Study dataset and then used to predict cognitive ability from
RSFC, GFC, and individual tasks in the HCP dataset. The Dunedin Study
and HCP have three parallel tasks that tap into similar behavioral
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circuits. The gambling task in the HCP and the MID task in Dunedin Study
both involve reward processing. The emotional processing task in the
HCP and the face matching task in the Dunedin Study both involve
passive processing of emotional facial expressions. Lastly, the working
memory task in the HCP and the Stroop task in the Dunedin Study both
tap into executive control. We restricted our analyses to comparisons of
RSFC, GFC, and these 3 parallel tasks. The abilities of RSFC and GFC was
contrasted with that of these parallel tasks to predict cognitive ability
within tasks. In both within-sample and out-of-sample tests the Spearman
correlation between predicted and true scores was adopted as an unbi-
ased effect size measure of predictive utility. Model predictions of
cognitive ability were assessed for significance using a parametric test for
significance of correlations. All p-values from correlations with cognitive
ability were corrected for multiple comparisons using the false discovery
rate (Benjamini and Hochberg, 1995). Differences in predictive utility
between models were compared using Steiger's z (Steiger, 1980). All
confidence intervals for CPM prediction estimates were generated with
bootstrap resampling, using AFNI's 1dCorrelate tool.

3. Results

3.1. What is the test-retest reliability of GFC?

We used data from the HCP to evaluate the test-retest reliability of
both intrinsic connectivity derived from resting-state scans alone and of
GFC derived from combinations of task and resting-state scans. Test-
retest reliability, as measured by ICC, ranges from 0 to 1, and is
commonly classified according to the following cutoffs: 0–0.4¼ poor,
0.4–0.6¼moderate, 0.6–0.75¼ good and 0.75–1¼ excellent (Cicchetti,
1994). In the HCP, when 5min (post-censoring) of resting-state data
were used to measure intrinsic connectivity defined within a common
atlas of 264 regions (Power et al., 2011), the reliability was generally
poor (mean ICC¼ 0.28, 95% CI [0.28, 0.28]; 71% of edges were poor,
23% moderate, 6% good, and less than 1% excellent). As more
resting-state data were added, the test-retest reliability continued to in-
crease up to the limits of the dataset at 40min (mean ICC¼ 0.54, 95% CI
[0.54, 0.54]; 26% of edges poor, 32% moderate, 25% good, and 18%
excellent) (Fig. 1A and left panel of Fig. 2).
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GFC, defined as exactly equal parts of task and resting-state data in the
HCP, followed a similar pattern of increasing reliability with increasing
data: 5min of data exhibited poor reliability (mean ICC¼ 0.28, 95% CI
[0.28, 0.28]; 70% of edges were poor, 22% moderate, 7% good, and less
than 1% excellent) but 40min of data showed good reliability (mean
ICC¼ 0.56, 95% CI [0.55, 0.56]; 25% of edges were poor, 27%moderate,
24% good, and 23% excellent) (see Fig. 1B, right panel of Fig. 2). In
addition, resting-state scans were not required to generate a reliable
measure of GFC, as this pattern of increasing reliability held when task
data alone were used to measure intrinsic connectivity (see Supplemental
Table S1). Furthermore, data from individual task scans alone generally
resulted in poor reliability (see Supplemental Figs. S2 and S3). A paired
sample t-test comparing ICCs across all edges revealed that GFC is
significantly more reliable than resting-state functional connectivity when
both are estimated with 40min of data (t(34715)¼ 140.01, p< .001).
While significant, this difference is not likely meaningful as it represents
only a 0.02 larger mean ICC in GFC. The low p-value is driven by the large
number of degrees of freedom in the t-test comparing a mean ICC estimate
from nearly 35,000 edges. Thus, we see the mean ICC of RSFC and GFC as
statistically separable but practically equivalent.

This general improvement in reliability with increasing data was not
unique to the HCP but was also observed in the population-representative
Dunedin Study. The Dunedin Study resting-state scan of 8:16min showed
generally low reliability (mean ICC¼ 0.30, 95% CI [0.30, 0.30]; 65% of
edges were poor, 23% moderate, 10% good, and 2% excellent). The
average reliability of the intrinsic connectivity estimates, however,
improved by 49% when using GFC created in the Dunedin Study by
combining the 8:16min of resting-state data with 27min (before
censoring) of task data (mean ICC¼ 0.45, 95% CI [0.45, 0.45]; 41% of
edges were poor, 26% moderate, 19% good and 14% excellent) (Sup-
plemental Fig. S3).

3.2. Influence of the global signal on reliability

GSR is still a controversial preprocessing step. Therefore, the main
reliability analyses in the HCP were rerun without GSR to test the in-
fluence of GSR on ICCs. Mean ICCs for 5min of data without GSR were
poor for both RSFC (mean ICC¼ 0.31, 95% CI [0.31, 0.31]; 68% of edges
were poor, 27%moderate, 4% good, and<1% excellent) and GFC (mean
ICC¼ 0.35, 95% CI [0.35, 0.35]; 60% of edges were poor, 31%moderate,
8% good, and 1% excellent) (see Supplemental Fig. S1). In parallel
fashion to the data processed with GSR, ICCs increased as scan length
increased up to 40min for both RSFC (mean ICC¼ 0.61, 95% CI [0.61,
0.61]; 8% of edges were poor, 34% moderate, 41% good, and 16%
excellent) and GFC (mean ICC¼ 0.63, 95% CI [0.63, 0.63]; 8% of edges
were poor, 30% moderate, 40% good, and 22% excellent). Despite the
improvement in mean ICC with additional data with and without GSR,
ICCs were significantly higher when GSR was not applied: 40min of GFC
had an average ICC that was 0.07 higher without GSR than when GSR
was applied. The same pattern was present in RSFC: 40min of resting-
state without GSR was more reliable on average than with GSR (rest
with GSR¼ 0.61, rest without GSR¼ 0.54). While higher reliabilities
without GSR could be a sign of improved detection of true individual
differences in intrinsic connectivity, they may also be a sign of a stable
propensity to move within the scanner, creating correlated motion arti-
fact in test and retest data (Power et al., 2016; van Dijk et al., 2012).
Because the global signal is highly susceptible to motion artifact and
there is no widely accepted method to isolate and remove just the arti-
factual component of the global signal while retaining the neural
component, we adopted a conservative approach by applying GSR signal
in all further analyses to ensure removal of motion related artifact present
in the global signal (Power et al., 2018).

3.3. Is there network specificity to improvements in reliability?

We next investigated network specificity in reliability by looking
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specifically at the reliability of edges within each functional network
rather than the reliability of the entire correlation matrix in aggregate. As
shown in Fig. 3, there was clear network heterogeneity in reliability.
While all networks improved in reliability from 10min of data to 40min,
some networks improved more. With both RSFC and GFC, the limbic
network had the lowest reliability at all scan lengths, improving from
10min of data (RSFC: mean ICC¼ 0.22, 95% CI [0.19, 0.25]; GFC: mean
ICC¼ 0.30, 95% CI [0.25, 0.34]) to 40min of data (RSFC: mean
ICC¼ 0.37, 95% CI [0.33, 0.41]; GFC: mean ICC¼ 0.39, 95% CI [0.35,
0.44]), but failing to escape a poor mean ICC. In contrast, networks that
over-represent heteromodal association cortex (Margulies et al., 2016;
Mesulam, 1998), namely the default mode network and fronto-parietal
network, on average achieved moderate reliability with just 10min of
data for both RSFC (mean fronto-parietal network ICC¼ 0.53, 95% CI
[0.52, 0.53]; mean default mode network ICC¼ 0.57, 95% CI [0.57,
0.58]) and GFC (mean fronto-parietal network ICC¼ 0.55, 95% CI [0.54,
0.56]; mean default mode network ICC¼ 0.57, 95% CI [0.57, 0.58]).
Good reliability was achieved for these networks with 20min of data for
both RSFC (mean fronto-parietal network ICC¼ 0.62, 95% CI [0.61,
0.62]; mean default mode network ICC¼ 0.66, 95% CI [0.66, 0.67]) and
GFC (mean fronto-parietal network ICC¼ 0.64, 95% CI [0.63, 0.64];
mean default mode network ICC¼ 0.65, 95% CI [0.65, 0.66]). With
40min of data, these networks had mean reliabilities near the excellent
range for both RSFC (mean fronto-parietal network ICC¼ 0.73, 95% CI
[0.72, 0.73]; mean default mode network ICC¼ 0.75, 95% CI [0.75,
0.75]) and GFC (mean fronto-parietal network ICC¼ 0.74, 95% CI [0.74,
0.75]; mean default mode network ICC¼ 0.77, 95% CI [0.77, 0.77]).
While there were some small differences in the network-specific re-
liabilities between RSFC and GFC (e.g., see dorsal attention network in
Fig. 3), network specific improvements with increasing scan length were
similar for RSFC and GFC.

3.4. What is the estimated heritability of RSFC and GFC at different scan
lengths?

As shown in Fig. 4A, the estimated heritability of intrinsic connec-
tivity depended on scan length. The amount of variance in RSFC attrib-
utable to the additive genetics (A) component of the ACE model
increased consistently as the amount of data increased from 5min (mean
A component¼ .09, 95% CI [0.09, 0.1]) to 40min (mean A compo-
nent¼ .22, 95% CI [0.21, 0.23]). This represents an increase in the
amount of variance in RSFC attributable to additive genetics of 138% as a
function of increased scan length. This increase in variance explained by
additive genetics was also present with GFC from 5min (mean A
component¼ .14, 95% CI [0.13, 0.14]) to 40min (mean A compo-
nent¼ .28, 95% CI [0.27, 0.29]). This represented an increase in the
amount of variance in GFC attributable to additive genetics of 107% as a
function of increased scan length. In addition, at equivalent scan lengths,
GFC had significantly higher estimated heritability across edges than
RSFC (e.g., 5min: t(945)¼ 10.11, p< .001) and 40min: (t(945)¼ 14.75,
p< .001)). Correspondingly, higher estimated mean heritability in GFC
than RSFC led to a greater percentage of heritable edges in GFC (see
Fig. 4B). In the ACE modeling, this pattern of increasing estimates of
heritability with increasing scan time was associatedwith simultaneously
decreased amount of variance explained by the E component, which
comprises both non-shared environment and measurement error
(Fig. 4C). The E component decreased for both RSFC and GFC as data
length increased from 5min (RSFC mean E component¼ .81, 95% CI
[0.81, 0.82]; GFC mean E component¼ .77, 95% CI [0.76, 0.77]) to
40min (RSFC mean E component¼ .63, 95% CI [0.63, 0.64]; GFC mean
E component¼ .61, 95% CI [0.60, 0.61]).

While the A and E components of the ACE modeling changed sub-
stantially with scan length, the shared-environment (C) (Fig. 4D) and
twin-specific (T) (Supplemental Fig. S4) components were relatively
stable with scan length. The variance attributable to the C and T com-
ponents was similar for 5min of RSFC (mean C component¼ .04, 95% CI



Fig. 4. The estimated heritability of RSFC and GFC varies as a function of scan length. Panels A, C and D display the mean A (additive genetics), E (non-shared
environment þ error) and C (shared environment) component estimates and 95% confidence intervals around those estimates, derived from ACE modeling of the twin
data in the HCP. Scan length increases the A component and decreases the E component while having little effect on the C component. GFC also consistently has more
variance attributable to the A component and lower variance attributable to the E component relative to RSFC. In panel B the % of heritable edges for RSFC and GFC
are displayed across a variety of scan lengths. A heritable edge is defined as an edge with a lower bound of the 95% confidence interval that is larger than 0 in the
ACE model.
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[0.03, 0.04]; mean T component¼ .06, 95% CI [0.05, 0.06]) and 5min of
GFC (mean C component¼ .04, 95% CI [0.03, 0.04]; mean T compo-
nent¼ .06, 95% CI [0.06, 0.07]) as well as with 40min of RSFC (mean C
component¼ .06, 95% CI [0.05, 0.06]; mean T component¼ .09, 95% CI
[0.08, 0.09]) and 40min of GFC (mean C component¼ .05, 95% CI
[0.05, 0.06]; mean T component¼ .06, 95% CI [0.06, 0.07]).

3.5. Exploring the connection between intrinsic connectivity and cognitive
ability

CPMwas used to predict cognitive ability from both RSFC and GFC in
both the HCP and the Dunedin Study. In the first set of analyses, within-
sample predictions were made using leave-one-out cross validation in the
HCP and Dunedin Study datasets separately (Fig. 5, left and center
panels). In the HCP dataset, we found that individual differences in
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cognitive ability could be predicted from 40min of RSFC (r2¼ 4.2%,
95% CI [1.0%, 9.7%]) and from 40min of GFC (r2¼ 7.6%, 95% CI [2.7%,
14.2%]) (see Fig. 5 and Supplemental Table S3). These results were
replicated and extended in the Dunedin Study using scan lengths that are
more representative of existing datasets than the HCP. Cognitive ability
could be predicted from the 8-min RSFC data (r2¼ 6.8%, 95% CI [3.5%,
11.3%]) as well as from 33min of GFC (r2¼ 10.2%, 95% CI [5.9%,
15.0%]; all available data; Supplemental Table S4). Although in com-
parison with RSFC, GFC had 81% greater predictive utility in the HCP
dataset and 50% greater predictive utility in the Dunedin Study dataset,
the statistical comparison of the correlations was not statistically signif-
icant in either the HCP (GFC r2¼ 7.6%, RSFC r2¼ 4.2%, Steiger's
z¼ 1.317, p¼ .188) or the Dunedin Study (GFC r2¼ 10.2%, RSFC
r2¼ 6.8%, Steiger's z¼ 1.72, p¼ .085). In addition, scan length had little
effect on within-sample predictive utility (see Supplemental Fig. S5).



Fig. 5. GFC is better than RSFC at predicting cognitive ability both within and between samples. Results from CPM models predicting cognitive ability from RSFC and
GFC. The x-axis displays predictions from leave-one-out cross validation within sample and out-of-sample models trained using the Dunedin Study dataset and tested
using the HCP dataset. Predictive utility is displayed as % variance explained (r2).
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While leave-one-out cross validation has been widely used with CPM
(Finn et al., 2015; Noble et al., 2017), the gold standard test of a model's
generalizable predictive utility is its ability to predict a phenotype in an
independent sample (Bzdok and Yeo, 2017; Whelan and Garavan, 2014;
Yarkoni and Westfall, 2017). This is particularly important for GFC, as it
purports to measure a generalizable feature of intrinsic connectivity and
thus correlations between individual differences in GFC and phenotypes
of interest should be shared across independent samples with different
batteries of fMRI tasks. Therefore, we used CPM to train two models (one
with rest and one with GFC) to predict cognitive ability in the larger
Dunedin Study dataset and tested generalizability by measuring the
ability of these models to predict cognitive ability in the HCP dataset. The
models built with RSFC (r2¼ 5.6%, 95% CI [1.8%, 11.9%], p,q< .001)
and GFC (r2¼ 9.5%, 95% CI [4.0%, 16.3%], p,q< .001) from the Dun-
edin Study dataset both successfully predicted cognitive ability in the
HCP dataset (Fig. 5 right panel and Fig. 6 left panel). However, GFC had
greater out-of-sample predictive utility than RSFC (GFC r2¼ 9.5%, RSFC
r2¼ 5.6%, Steiger's z¼ 2.57, p¼ .010). This provides evidence that GFC
is a more generalizable measure across independent samples than RSFC.

3.6. Does GFC predict cognitive ability better than intrinsic connectivity
measured from specific tasks?

Recent research has suggested that intrinsic connectivity estimates
derived from task data are better at predicting cognitive ability than
estimates derived from resting-state data (Greene et al., 2018). Our above
finding that GFC outperforms RSFC at predicting cognitive ability is in
line with this observation. However, given that many researchers collect
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different tasks and resting-state scans with different “task” demands (e.g.,
eyes-closed, fixation, etc.), we next investigated if GFC could perform as
well or better than specific tasks at out-of-sample prediction of cognitive
ability. We constructed five prediction models that were trained to pre-
dict cognitive ability using the Dunedin Study dataset (the
population-representative sample with the gold-standard WAIS IQ test)
and tested for generalizability using the HCP dataset (see Supplemental
Fig. S6 for the converse, models trained in HCP and tested in the Dunedin
Study). Two models were carried over from the previous analyses (RSFC
and GFC) and three additional task-specific models were added. These
consisted of models trained and tested on three parallel tasks available in
both the Dunedin Study and HCP (see methods for details). All models
trained using the Dunedin Study dataset were able to significantly predict
cognitive ability in the HCP dataset (all FDR q< .05; Fig. 6 and Supple-
mental Table S5). Prediction of cognitive ability from RSFC data
(r2¼ 5.6%, 95% CI [1.8%, 11.9%], p,q< .001), GFC data (r2¼ 9.5%,
95% CI [4.0%, 16.3%], p,q< .001), emotional processing data
(r2¼ 9.8%, 95% CI [4.3%, 17.1%], p< .001, q¼ 0.001), reward pro-
cessing data (r2¼ 9.1%, 95% CI [3.6%, 16.5%], p< .001, q¼ 0.001) and
executive function data (r2¼ 4.6%, 95% CI [1.0%, 10.8%], p< .001,
q¼ 0.001) all successfully generalized from the Dunedin Study dataset to
the HCP dataset.

Comparing the relative performance of models trained with each type
of data revealed that GFC was generalizable and performed as well or
better at out-of-sample prediction of cognitive ability compared to all
tasks (Fig. 6). Predictions of cognitive ability from GFC performed better
than RSFC (GFC r2¼ 9.5%, RSFC r2¼ 5.6%, Steiger's z¼ 2.57, p¼ .01)
and executive function data (GFC r2¼ 9.5%, executive function



Fig. 6. Out-of-sample prediction of cognitive ability
for GFC is better than RSFC and as good as task-
derived intrinsic connectivity. All models were
trained on intrinsic connectivity data from the Dun-
edin Study and tested using data from the HCP.
Models were trained and tested with the same type of
data. With task data this meant that models were
trained and tested with tasks that have a comparable
(parallel) task in both the HCP and Dunedin study.
Predictive utility is displayed as % variance explained
(r2).
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r2¼ 4.6%, Steiger's z¼ 2.19, p¼ .03), and performed as well as
emotional processing data (GFC r2¼ 9.5%, emotion processing
r2¼ 9.8%, Steiger's z¼�0.10, p¼ .92) and reward data (GFC r2¼ 9.5%,
reward r2¼ 10.2%, Steiger's z¼�0.31, p¼ .76). Out-of-sample predic-
tion was largely unaffected by the amount of data used in constructing
the intrinsic connectivity matrices but was adversely affected when task
regression was removed (see Supplemental Table S2).

4. Discussion

Here we present GFC as a method for readily improving the reliability
of intrinsic connectivity by combining resting-state and task data. Across
two independent datasets we found that scan length had a significant
impact on the reliability of intrinsic connectivity estimates regardless of
whether the data came solely from resting-state scans (i.e., RSFC) or from
a combination of resting-state and task scans (i.e., GFC). GFC, the addi-
tion of task scans to short resting-state scans, substantially increased the
reliability of intrinsic connectivity over and above short resting-state
scans alone. Moreover, we found that the improved reliability from
aggregating data resulted in higher estimates of the heritable variation in
intrinsic connectivity, and that this gain was larger for GFC than RSFC. In
addition, GFC consistently performed better than RSFC and performed as
well or better than intrinsic connectivity from individual task scans at
predicting individual differences in a complex human trait, namely
cognitive ability.

These findings have several implications for current and future neu-
roimaging research because they demonstrate that 1) reliable and heri-
table measurement of individual differences in the functional
architecture of the brain is not only achievable in niche, specialty data-
sets with hours of resting-state scans, but also in many existing datasets if
GFC is adopted; 2) mapping individual differences in behavior and
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cognition may be improved by adopting GFC, as demonstrated by
generalizable predictive utility when studying cognitive ability; and 3) to
the extent that commensurate gains in reliability and heritability may be
achieved in other datasets, our results provide a reference that re-
searchers can use to roughly estimate the gain in reliability they may
achieve by adopting GFC (Figs. 1 and 2, S2 and S3). We next elaborate on
each of these points.

4.1. Data aggregation across task and resting-state scans boosts reliability

We found that GFC, derived from the combination of resting-state and
task scans, can be a reliable measure of individual differences in intrinsic
connectivity. Consistent with previous studies (Birn et al., 2013; Finn
et al., 2015; Laumann et al., 2015), we showed that the test-retest reli-
ability of intrinsic connectivity is highly dependent on the amount of data
collected. This is true of RSFC as well as GFC. With only 5–10min of data,
both RSFC and GFC show poor reliability in the HCP and Dunedin Study
datasets. Only with 30–40min of data do RSFC and GFC begin to broadly
display good reliability. These findings follow directly from past studies
that have shown reliability depends on scan length (Anderson et al.,
2011; Birn et al., 2013; Hacker et al., 2013), that task and resting-state
data share a large proportion of variance (Cole et al., 2014; Geerligs
et al., 2015), and that both task and resting-state data measure common
individual differences in intrinsic connectivity (Gratton et al., 2018).
Some functional networks, however, can achieve good reliability with
relatively little data. For example, the default mode and fronto-parietal
networks achieved good reliability for within-network connections
with just 20min of RSFC or GFC (see Fig. 3). In contrast, the limbic
network failed to achieve even fair levels of reliability with up to 40min
of data. These findings suggest that the amount of data needed to derive
reliable estimates of intrinsic connectivity for individual differences
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research will vary depending on the network of interest.
Importantly, the current reality is that most neuroimaging studies

have only 5–10min of resting-state data, which are further limited by
sampling variability, motion-artifacts, and other sources of noise (Gordon
et al., 2017; Gratton et al., 2018; Power et al., 2014). Given the reliability
estimates reported here, it is likely that in many studies, individual dif-
ferences in intrinsic connectivity will be unmeasurable with resting-state
data alone (Anderson et al., 2011; Hacker et al., 2013). Fortunately, it is
common practice for researchers to collect 10–40min of task fMRI in
addition to resting-state. Therefore, if researchers adopt a broader defi-
nition of intrinsic connectivity, such as GFC, they can combine task and
resting-state data to achieve a reliable measure of individual differences
in intrinsic connectivity.

4.2. Data aggregation across task and resting-state scans boosts estimates
of heritability

We found that individual differences in intrinsic connectivity in both
RSFC and GFC were significantly attributable to additive genetic in-
fluences. With 40min of data, 22% of the variance in RSFC and 28% of
the variance in GFC was attributable to additive genetic effects. With
equivalent amounts of data, GFC produced higher heritability estimates
than RSFC, and the influence of additive genetic effects was detectable in
a larger proportion of functional connections (Fig. 4). In addition, we
found that scan length had an impact on the heritability estimates of
intrinsic connectivity in both RSFC and GFC. The average amount of
variance in intrinsic connectivity that was attributable to additive genetic
effects more than doubled in both RSFC (increase of 138%) and GFC
(increase of 107%) as scan length increased from 5 to 40min. While the
heritability of intrinsic connectivity has been investigated before
(Adhikari et al., 2018; Ge et al., 2017), the link between scan length and
heritability has not been described. Although a reliable measure does not
have to be heritable, a measure cannot have high heritability without
high reliability (Ge et al., 2017). That is, measurement reliability places a
ceiling on the heritability estimate of a phenotype. Therefore, our finding
that the heritability of intrinsic connectivity increases with increasing
reliability suggests that the low reliability of intrinsic connectivity in
short fMRI scans limits estimations of the true underlying heritability of
intrinsic connectivity in many datasets. More specifically, our finding
suggests that researchers should consider the amount of fMRI data
available for estimation of intrinsic connectivity when planning and
evaluating imaging genetics research.

Our results have additional implications for genetically-informed
fMRI research. Neuroimaging measures have been considered prom-
ising intermediate phenotypes that would bring researchers closer to the
mechanisms through which genetics lead to heritable psychological traits
(Braskie et al., 2011; Hariri and Weinberger, 2003; Hasler and Northoff,
2011; Meyer-Lindenberg and Weinberger, 2006). To uncover these links,
large datasets like ENIGMA and the UK Biobank (Sudlow et al., 2015;
Thompson et al., 2014), have been used to conduct genome wide asso-
ciation studies (GWAS) of MRI-based phenotypes. While these in-
vestigations have had success in finding genetic variants linked to
structural MRI measures (Adams et al., 2016; Hibar et al., 2017, 2015;
Stein et al., 2012), they have largely failed to find significant genetic
correlates of functional intrinsic connectivity measures (Elliott et al.,
2017). One reason for this failure may be the low reliability and herita-
bility of the short resting-state scans typically used to derive individual
differences measures of RSFC in these studies. Our results suggest that
future GWASmay be better powered to find genetic variants linked to the
functional architecture of the brain by adopting GFC rather than RSFC
from short resting-state scans.

4.3. How general is general functional connectivity?

Previous research has shown that the predictive utility of intrinsic
connectivity can be higher when derived from task data than when
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derived from resting-state data (Greene et al., 2018). Some task states
in particular may reveal individual differences in intrinsic connectivity
that aid in predictive utility (Finn et al., 2017). While these findings
provide insight into individual differences in intrinsic connectivity
and a new use for task data, they pose a problem for replication and
cumulative aggregation of findings across datasets. While most fMRI
studies collect task data, very few collect the same tasks. Our findings
here suggest that GFC may provide a solution to this problem. First,
we found that like task-derived intrinsic connectivity, GFC can
outperform RSFC when predicting within-sample and out-of-sample
variability in cognitive ability (Figs. 5 and 6). Second, we found
that GFC performed as well or better than specific tasks alone at
predicting cognitive ability out-of-sample. Critically, in these com-
parisons GFC was constructed with a combination of different tasks in
the training and testing datasets suggesting that GFC may measure a
common, generalizable backbone of intrinsic connectivity that can be
applied and aggregated across independent datasets with different
task batteries (Supplemental Tables S6 and S7). While further research
is needed to replicate these findings, they nevertheless suggest that
GFC may provide a generalizable, practical framework that re-
searchers with resting-state and task data can use to drive a cumula-
tive, predictive neuroscience of individual differences (Button et al.,
2013; Szucs and Ioannidis, 2017).

4.4. Is general functional connectivity too heterogeneous?

An understandable reluctance in implementing GFC could be that it
would introduce heterogeneity in the estimation of intrinsic connectivity.
Whereas RSFC is thought to be a common framework with generaliz-
ability across datasets, the combination of different sets of tasks in
different datasets may introduce additional variability. Below, we pro-
vide three reasons why we think this is less problematic than it first
appears. We further provide specific recommendations and guidelines for
adopting and estimating GFC and point to features of our analyses that
support the validity of GFC as a robust and reliable measure of individual
differences in intrinsic connectivity.

First, resting-state data are by nature heterogenous, and the resting-
state is its own type of task (Buckner et al., 2013). Researchers collect
resting-state data under different conditions in which participants close
their eyes, have their eyes open, or fixate. These differences in
resting-state conditions influence intrinsic connectivity (Patriat et al.,
2013). Despite these differences, all approaches are collectively referred
to as resting-state scans. In addition, factors like thought content
(Christoff et al., 2009; Hurlburt et al., 2015), caffeine intake (Wong et al.,
2012), recent cognitive tasks (Waites et al., 2005), and falling asleep
(Deco et al., 2014) can introduce further heterogeneity that can bias
intrinsic connectivity estimates. It has even been estimated that
approximately 30% of participants fall asleep within the first 3min of a
resting-state scan (Tagliazucchi and Laufs, 2014). Nevertheless,
resting-state scans measure a common set of functional networks (Yeo
et al., 2011), and display trait-like features driven by stable factors such
as genetics (Glahn et al., 2010) and structural connectivity (Honey et al.,
2009). For these reasons resting-state data represent substantial promise
as an individual-differences measure if enough data are collected to
average out sampling variability (Gratton et al., 2018). But, as already
stated, few researchers collect enough data to fulfill this promise. Con-
nectivity estimates from task data are also shaped by many of these stable
factors (Cole et al., 2014; Krienen et al., 2014), and data from different
tasks predominantly measure overlapping individual differences that are
only weakly influenced by task demands (Gratton et al., 2018). Admit-
tedly, GFC will vary, to some extent, across samples because each study
collects a unique combination of resting-state and task data. However,
RSFC will vary too. Moreover, we found that disparate task and
resting-state scans collectively measure reliable, heritable individual
differences with generalizable out-of-sample predictive utility in the
form of GFC.
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Second, the benefits of GFC converged across two different samples,
with different scanners, scanning parameters, and demographics. The
HCP represents a healthy sample of highly-educated individuals (Van
Essen et al., 2013), while the Dunedin Study represents a
population-representative birth cohort with a broad range of mental and
physical health conditions, socioeconomic status, and full representation
of variability in many complex traits (Poulton et al., 2015). Across
samples, the data came from 11 different tasks (HCP¼ 7, Dunedin
Study¼ 4), many with unrelated cognitive demands, different scan
lengths, stimuli, behavioral requirements, and instructions. The data
were processed with different preprocessing schemes and software
(“minimally preprocessed” in the HCP and custom scripts in the Dunedin
Study). While the amount of scan time was tightly controlled in the HCP
analyses (i.e., equal time after censoring), in the Dunedin Study motion
censoring led to unequal scan lengths across participants as is the case in
many analyses of intrinsic connectivity. Despite these many differences
between datasets, the results demonstrate that GFC can achieve good
test-retest reliability, inter-rater reliability (different preprocessing
schemes), out-of-sample reliability (convergence across datasets and
out-of-sample prediction), and parallel forms reliability (different tasks
in each sample) (Dubois and Adolphs, 2016). While we present evidence
in favor of the generalizability of GFC, future research should further
investigate the heterogeneity in GFC to find combinations of tasks that
most efficiently estimate individual differences in intrinsic connectivity
(Finn et al., 2017; Shah et al., 2016).

Third, reliability fundamentally limits the ability to detect associa-
tions between any two measures (Nunnally Jr., 1970; Vul et al., 2009).
Therefore, any investigation mapping intrinsic connectivity to individual
differences in behavior, cognition, or disease is fundamentally limited by
the reliability of the intrinsic connectivity measures. Relatedly, statistical
power to detect true effects depends on the anticipated effect size, which
is in turn dependent on reliability of each measurement (Kanyongo et al.,
2007; Williams and Zimmerman, 1989). Given that many studies only
have 5–10min of resting-state data and consequently poor reliability of
intrinsic connectivity measures, they have drastically reduced statistical
power (Button et al., 2013; Ioannidis, 2008, 2005), and likely tenuous
correlates of individual differences unless they adopt a framework like
GFC. Previous research has found that collectively a large number of
unreliable edges can achieve multivariate reliability that results in pre-
dictive utility (Noble et al., 2017). While multivariate predictive utility
may be achievable in studies with poor univariate edge-wise reliability
(Fig. S5), the interpretability and clinical utility of these studies will be
diminished by low univariate reliability. This is because interpretability
and clinical utility depend on isolating specific brain areas or functional
connections that can be said to be “most” important to the phenotype of
interest. This cannot be done without decent univariate reliability
because accurate estimation of true parameters in a prediction model
depends on reliability (Cremers et al., 2017; Vul et al., 2009; Yarkoni and
Westfall, 2017). For example, if researchers want to characterize bio-
markers of mental illness that could be targeted with interventions like
transcranial magnetic stimulation (Fox et al., 2014) or real-time neuro-
feedback (Caria et al., 2012), they will need to isolate specific circuits
that with confidence can be said to be “altered” and relevant to the
disease process in mental illness. Actionable identification of these bio-
markers will only be possible with adequate univariate reliabilities. GFC
provides a practical solution to this problem, while also addressing power
and reliability issues that have been identified more generally in
neuroscience (Button et al., 2013; Szucs and Ioannidis, 2017) and beyond
(Aarts et al., 2015; Errington et al., 2014; Ioannidis, 2005; Ioannidis
et al., 2001; Munaf�o et al., 2017). GFC provides a tool for researchers to
repurpose existing and future datasets to better contribute to a cumula-
tive science of individual differences (Dubois and Adolphs, 2016) with
clinical relevance (Fox, 2010). For these reasons, we think that in many
studies the gains in reliability offered by GFC will outweigh potential
task-induced “heterogeneity.”
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4.5. Recommendations

Based on the above summary, we generally recommend that re-
searchers seeking to maximize the reliability and generalizable predic-
tive utility of GFC should aggregate as much data as possible, across all
rest, task and naturalistic fMRI data, that they have at their disposal
(O'Connor et al., 2017). Our results further suggest that with a minimum
of 20min of GFC data, researchers can achieve good reliability in some
networks of broad interest (e.g., default, frontoparietal and dorsal
attention networks). Furthermore, a strict balance of the amount of data
from each task and resting-state scan is not necessary to achieve the
benefits of GFC. This is demonstrated by the increased reliability of GFC
despite unequal task lengths in the Dunedin Study dataset. It is also
demonstrated in the HCP dataset by continued improvement in reliability
despite timepoints being selected at random from the remaining data
after reaching a minimum of 25min of data. However, we urge caution in
applying GFC to datasets that are heavily skewed (>50%) towards
resting-state or one specific task. Although we expect that deriving GFC
from this type of dataset will boost reliability, the generalizability of
these findings to GFC derived from other datasets may be limited because
of the overrepresentation of a specific type of data. Lastly, our results
suggest that researchers developing new protocols may benefit from
collecting multiple short task scans rather than a single longer task scan
(Supplemental Tables S1 and S5).

5. Conclusion

Here we propose GFC as a method for improving the reliability of
estimating individual differences in the intrinsic architecture of func-
tional networks. We demonstrate that, when the amount of data available
for analysis is held constant, the combination of resting-state and task
data is at least as reliable as resting-state alone. Additionally, when the
same amount of data is available, GFC produces higher heritability es-
timates than RSFC. Many researchers who have less than 25min of
resting-state data but have additionally collected task data on the same
participants can immediately boost reliability, heritability, and power by
adopting GFC as a measure of intrinsic connectivity when studying in-
dividual differences. Our findings also suggest that future data collection
should consider naturalistic fMRI (Hasson et al., 2010, 2004; Huth et al.,
2016; Lahnakoski et al., 2012; Vanderwal et al., 2017) and engaging
tasks in addition to resting-state scans when generating data for esti-
mating intrinsic connectivity. This may be especially true when studying
children, elderly, or mentally ill participants, as these groups often
cannot lie still for 25min or more of resting-state scanning (Power et al.,
2012; Satterthwaite et al., 2013; Yuan et al., 2009). Our current findings
also suggest that researchers need not think of collecting resting-state and
task data as a zero-sum competition for scan timewhen designing studies.
Instead, our findings demonstrate that task and resting-state data provide
complementary measures that together can lead to more reliable, heri-
table measurement of individual differences in intrinsic connectivity. We
think that collecting adequate amounts (i.e., >25min) of high-quality
fMRI data should be emphasized over the traditional task-rest di-
chotomy, when individual differences are of interest. If fMRI is going to
be a part of a cumulative neuroscience of individual differences with
clinical relevance, psychometric measurement quality, especially reli-
ability, must be at the forefront of study design.
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